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Abstract 22 
 23 
Multiple climate-driven stressors, including warming and increased nutrient delivery, are 24 
exacerbating hypoxia in coastal marine environments. Within coastal watersheds, environmental 25 
managers are particularly interested in climate impacts on terrestrial processes, which may 26 
undermine the efficacy of management actions designed to reduce eutrophication and consequent 27 
low-oxygen conditions in receiving coastal waters. However, substantial uncertainty 28 
accompanies the application of Earth System Model (ESM) projections to a regional modeling 29 
framework when quantifying future changes to estuarine hypoxia due to climate change. In this 30 
study, two downscaling methods are applied to multiple ESMs and used to force two 31 
independent watershed models for Chesapeake Bay, a large coastal-plain estuary of the eastern 32 
United States. The projected watershed changes are then used to force a coupled 3-D 33 
hydrodynamic-biogeochemical estuarine model to project climate impacts on hypoxia, with 34 
particular emphasis on projection uncertainties. Results indicate that all three factors (ESM, 35 
downscaling method, and watershed model) are found to contribute significantly to the 36 
uncertainty associated with future hypoxia, with the choice of ESM being the largest contributor. 37 
Overall, in the absence of management actions, there is a high likelihood that climate change 38 
impacts on the watershed will expand low-oxygen conditions by 2050, relative to a 1990s 39 
baseline period; however, the projected increase in hypoxia is quite small (4%) because only 40 
climate-induced changes in watershed inputs are considered and not those on the estuary itself. 41 
Results also demonstrate that the attainment of established nutrient reduction targets will reduce 42 
annual hypoxia by about 50% compared to the 1990s. Given these estimates, it is virtually 43 
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certain that fully implemented management actions reducing excess nutrient loadings will 44 
outweigh hypoxia increases driven by climate-induced changes in terrestrial runoff. 45 
 46 
Short Summary  47 
 48 
Climate impacts are essential for environmental managers to consider when implementing 49 
nutrient reduction plans designed to reduce hypoxia. This work highlights relative sources of 50 
uncertainty in modeling regional climate impacts on the Chesapeake Bay watershed and 51 
consequent declines in Bay oxygen levels. The results demonstrate that planned water quality 52 
improvement goals are capable of reducing hypoxia levels by half, offsetting climate-driven 53 
impacts to terrestrial runoff.  54 
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1 Introduction 55 
 56 
 Over the past several decades, estuarine and coastal ecosystems have been subject to elevated 57 
levels of hypoxia relative to the open ocean (Gilbert et al., 2010), and are anticipated to be 58 
affected by multiple climate change impacts including terrestrial runoff changes (Breitburg et al., 59 
2018) and rising temperatures (Whitney, 2022). Increases in precipitation volume and intensity 60 
are likely to increase discharge and associated nutrient and sediment export to coastal systems 61 
(Howarth et al., 2006; Lee et al., 2016; Sinha et al., 2017). Rising atmospheric temperatures will 62 
increase soil temperatures and alter evapotranspiration, soil biogeochemical cycling and plant 63 
responses (Schaefer and Alber, 2007; Wolkovich et al., 2012; Ator et al., 2022), also affecting 64 
riverine nutrient export to marine habitats. Further changes to agricultural practices driven by 65 
these same climate impacts are also likely to contribute to altered nutrient applications and 66 
subsequent soil cycling (Wagena et al., 2018). Altogether, climate impacts in the terrestrial 67 
environment may further eutrophy coastal ecosystems (Najjar et al., 2010), altering the 68 
phenology and biogeochemical rates of nutrient consumption and exacerbating hypoxia (Testa et 69 
al., 2018). 70 
 Future estimates of coastal hypoxia have increased substantially over the past decade, likely 71 
influenced by increased access to biogeochemical modeling tools and regional climate 72 
projections needed for finer scale modeling and analyses (Fennel et al., 2019). The majority of 73 
coastal hypoxia climate impact studies have focused on a select few coastal locations including 74 
the Baltic Sea (Meier et al., 2011a,b; Meier et al., 2012; Neumann et al., 2012; Ryabchenko et 75 
al., 2016; Saraiva et al., 2019a,b; Wåhlström et al., 2020; Meier et al., 2021; Meier et al., 2022), 76 
Chesapeake Bay (Wang et al., 2017; Irby et al., 2018; Ni et al., 2019; Testa et al., 2021; Tian et 77 
al., 2021; Cai et al., 2021), and the Gulf of Mexico (Justić et al., 1996; Justić et al., 2007; Lehrter 78 
et al., 2017; Laurent et al., 2018). Other projected changes to dissolved oxygen (O2) levels have 79 
been documented in nearshore environments including the North Sea (Meire et al., 2013; 80 
Wakelin et al., 2020), Arabian Sea (Lachkar et al., 2019), California Current System (Dussin et 81 
al., 2019; Siedlecki et al., 2021; Pozo Buil et al., 2021), and coastal waters surrounding China 82 
(Hong et al., 2020; Yau et al., 2020; Zhang et al., 2021; Zhang et al., 2022). Hypoxia projections 83 
in relatively smaller estuaries have also been documented in the Elbe (Hein et al., 2018), 84 
Garonne (Lajaunie-Salla et al., 2018), and Long Island Sound (Whitney and Vlahos, 2021). 85 

Broadly speaking, these climate impact studies apply either a range of idealized changes to 86 
conduct a sensitivity study or utilize long-term projections derived from Earth System Models 87 
(ESMs) (IPCC, 2013). When directly applying such projections to study regional coastal oxygen 88 
responses, dynamically or statistically downscaled estimates of atmospheric and marine variables 89 
are typically used to continuously simulate climate impacts or to calculate and apply a change 90 
factor (Carter et al., 1994; Anandhi et al., 2011) to a shorter historical time period. Quantifying 91 
the relative uncertainties from various sources including ESM, downscaling methodology, 92 
internal variability, and hydrological model is not new to the field of climate research (Hawkins 93 
and Sutton, 2009; Yip et al., 2011; Northrop and Chandler, 2014) or watershed applications 94 
(Bosshard et al., 2013; Vetter et al., 2017; Wang et al., 2020; Ohn et al., 2021). Questions of 95 
uncertainty due to climate effects in past marine ecosystem impact studies have often been 96 
addressed by selecting some combination of ESMs and/or emissions scenarios (Meier et al., 97 
2011a; Ni et al., 2019; Saraiva et al., 2019b; Meier et al., 2019; Meier et al., 2021; Pozo Buil et 98 
al., 2021). Additionally, some studies have also sought to account for the importance of managed 99 
nutrient runoff from terrestrial (Irby et al., 2018; Saraiva et al., 2019a) and atmospheric (Yau et 100 
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al., 2020; Meier et al., 2021) sources and their impacts on oxygen levels. Despite some 101 
comprehensive efforts to identify sources of uncertainty in coastal oxygen projections (Meier et 102 
al., 2019; 2021), few studies have evaluated uncertainties introduced by the choice of specific 103 
downscaling method and/or terrestrial model. These factors represent additional sources of 104 
variability when estimating future hypoxia and are inherent in regional simulations of coastal 105 
dynamics. 106 

The Chesapeake Bay, which is the largest estuary in the continental United States (Kemp et 107 
al., 2005), has undergone intensive management efforts to improve water quality and oxygen 108 
levels over the past three decades. These management efforts have focused on the reduction of 109 
excess nitrogen, phosphorus, and sediment loadings to the Bay (USEPA, 2010), and continuous 110 
adaptive monitoring efforts to evaluate progress in restoring water quality (Tango and Batiuk, 111 
2016). Recent analyses of monitoring data have demonstrated improvements in water quality 112 
throughout the Bay despite the trajectory of recovery being slowed by extreme weather events 113 
(Zhang et al., 2018). Observed lags in water quality responses to nutrient reductions (Murphy et 114 
al., 2022) are also evident in recent years (Zahran et al. 2022). Despite the difficulties in 115 
assessing long-term improvements in water quality due to strong interannual variability, new 116 
research has demonstrated that the Chesapeake Bay is more resilient to recent and ongoing 117 
climate change impacts that have decreased oxygen levels as a result of decades of nutrient load 118 
reductions (Frankel et al., 2022). 119 

In recent years managers have recognized the importance of investigating whether the 120 
originally established Total Maximum Daily Loads (USEPA, 2010) will need to be adjusted to 121 
ensure the attainment of water quality standards for the Chesapeake Bay as the climate changes 122 
(Chesapeake Bay Program, 2020; Hood et al., 2021). Increasing temperatures and precipitation 123 
are anticipated to affect watershed snowpack, soil moisture levels, terrestrial nutrient cycling, 124 
and associated discharge, streamflow generation, and flooding (Shenk et al., 2021b), potentially 125 
altering the efficacy of nutrient reduction strategies. Increases in nutrient and carbon inputs to the 126 
Bay resulting from climate change and anthropogenic stressors have already been documented 127 
over the course of the past century (Pan et al., 2021; Yao et al., 2021), and are anticipated to 128 
increase in the 21st century as well (Wang et al., 2017; Irby et al., 2018; Ni et al., 2019). For 129 
example, Irby et al. (2018) directly tested the role of future nutrient reductions via a sensitivity 130 
analysis of mid-century climate effects, and found substantial alleviation of hypoxic conditions 131 
when management targets were met, despite significantly increasing water temperatures. 132 
However, that study applied spatially constant changes in watershed inputs derived from a 133 
specific watershed model, one downscaling technique and a median estimate of ESM 134 
projections. A more robust effort to produce a range of scenarios incorporating multiple 135 
watershed models, downscaling techniques and ESMs is needed to assess uncertainty estimates 136 
of projected hypoxia, which can be used to guide decision-making that explicitly considers what 137 
levels of environmental risk are acceptable for Chesapeake Bay stakeholders. 138 

The present study applies multiple downscaled ESMs to two independently developed 139 
watershed models with significantly different representation of watershed processes and spatial 140 
scale; both are used to force a coupled hydrodynamic-biogeochemical estuarine model in order 141 
to better constrain the relative uncertainties of future terrestrial runoff estimates on estuarine 142 
hypoxia (Shenk et al., 2021a). The resulting ensemble of numerical experiments includes 143 
realistic climate forcings and an extensive set of regional linked watershed-estuarine 144 
deterministic model simulations. The framework established in this research assesses the relative 145 
uncertainties introduced by choice of ESM, downscaling methodology, and regionally focused 146 
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watershed model in quantifying changes to O2 levels in the estuary. Additionally, this 147 
investigation constrains the bounds of changes to Chesapeake Bay hypoxia (defined herein as O2 148 
< 2 mg L-1) with and without the effects of management actions, using an ensemble of realistic 149 
watershed forcings. The study provides a roadmap for environmental managers to design climate 150 
impact assessments that are better able to quantify the range of possible future levels of hypoxia, 151 
which can be influenced by nutrient management actions. 152 
 153 
2 Methods 154 
 155 
2.1 Monitoring data 156 
 Monthly estimates of freshwater discharge, inorganic nitrogen, and organic nitrogen at the 157 
non-tidal monitoring stations nearest the head of tide of the three largest tributaries to the 158 
Chesapeake Bay (Susquehanna, Potomac, and James; Fig. 1a; Table S1) were used to evaluate 159 
the performance of watershed models. Discharge and nitrogen load estimates are derived from 160 
observations that are collected at United States Geological Survey (USGS) stream gages and 161 
comprise part of the USGS River Input Monitoring (RIM) program in the Chesapeake Bay 162 
watershed. Estimates for the nitrogen species were calculated using a weighted statistical 163 
regression process that accounts for the variability introduced by time, discharge, and season 164 
(Hirsch et al., 2010).  165 
 Main stem bay observations collected over the period 1991-2000, accessible via a data 166 
repository maintained by the Chesapeake Bay Program (CBP; Olson 2012; CBP DataHub 2020), 167 
were used to assess estuarine model skill (see Sect. 2.3.1). Since 1984, numerous water quality 168 
data have been collected along the Bay’s main stem and throughout its tributaries at semi-169 
monthly to monthly intervals as part of the Water Quality Monitoring Program (WQMP). These 170 
data were collected at the surface, above and below the pycnocline, and at the bottom for 171 
chemical variables including nitrate and organic nitrogen, and throughout the entire water 172 
column at 1-2 m intervals for O2. Twenty CBP stations were selected for model comparison at 173 
the surface and bottom (Fig. 1b, Table S2), including those most frequently sampled and those 174 
located along the entirety of the Bay’s main channel where hypoxia commonly occurs (Officer et 175 
al., 1984; Hagy et al., 2004). Estimates of annual hypoxic volume (AHV), defined as the volume 176 
of hypoxic water integrated over the year (with units of volume*time), were taken from the 177 
Bever et al. (2013; 2018; 2021) interpolation of O2 measurements at 56 CBP stations.  178 
 179 
2.2 Estuarine and watershed modeling tools and evaluation 180 
 Model simulations are conducted with ChesROMS-ECB, a fully coupled, three-dimensional, 181 
hydrodynamic and Estuarine Carbon Biogeochemistry (ECB) implementation of the Regional 182 
Ocean Modeling System (ROMS) developed for the Chesapeake Bay with 20 terrain-following 183 
vertical levels and an average horizontal resolution of approximately 1.8 kilometers in the 184 
estuary’s mainstem (Feng et al., 2015; St-Laurent et al., 2020; Frankel et al., 2022). Two 185 
parameter changes were recently made to improve the representation of modeled oxygen: (1) a 186 
decrease of the maximum growth rate of phytoplankton, which, following Irby et al. (2018), 187 
preserves the temperature-dependent linear Q10 described in Lomas et al. (2002), and (2) a 188 
decrease in the critical bottom shear stress from 0.010 Pa to 0.007 Pa, which increases the 189 
resuspension of organic matter and is well within the range of observed shear stresses evaluated 190 
by Peterson (1999). 191 
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Estimates of watershed discharge, nitrogen loading, and sediment loading to drive the 192 
estuarine model were obtained via two independently developed models of the Chesapeake Bay 193 
watershed: the Dynamic Land Ecosystem Model (DLEM; Yang et al., 2015; Yao et al., 2021) 194 
and the USEPA Chesapeake Bay Program’s regulatory Phase 6 Watershed Model (Phase 6; 195 
Chesapeake Bay Program, 2020). Both models were applied to generate comparable reference 196 
runs over the average hydrology period of 1991-2000, chosen because it reflects the decade used 197 
by the Chesapeake Bay Program to calculate Total Maximum Daily Loads (USEPA, 2010) and 198 
assess water quality improvements. Outputs from both watershed models were aggregated into 199 
10 major river input locations (Fig. 1). Watershed outputs were mapped to estuarine variables as 200 
in Frankel et al. (2022), except that a more realistic partitioning of terrestrial organic nitrogen 201 
loading into labile and refractory pools was implemented such that the percent refractory organic 202 
nitrogen loading increases with discharge at high flow volumes (Appendix A). 203 

Atmospheric conditions, including temperature and winds, were obtained from the ERA5 204 
reanalysis dataset (C3S, 2017) as in Hinson et al. (2021). Coastal boundary conditions were 205 
interpolated to match the nearest physical and nutrient observations, as in previous work (Da et 206 
al., 2021). In order to isolate the impacts of climate-driven changes in watershed inputs, 207 
atmospheric and coastal boundary conditions were kept the same in all model simulations under 208 
realistic 1991-2000 conditions, for both reference runs (1991-2000) and all future scenarios 209 
(2046-2055). 210 
 Watershed and estuarine model skill was evaluated by comparing results from the two 211 
reference scenarios to available data (see Sect. 2.1). Nash–Sutcliffe efficiencies (Nash and 212 
Sutcliffe, 1970) were used to evaluate watershed model performance of freshwater discharge and 213 
nutrient loadings. Estuarine model skill was evaluated by comparing model outputs matching the 214 
spatio–temporal variability of observations at 20 main stem stations over the 10-year reference 215 
period. Average bias (model output minus observed value) and root-mean squared difference 216 
(RMSD) of annual O2, nitrate (NO3), and dissolved organic nitrogen (DON) concentrations were 217 
calculated at the surface and bottom. AHV estimates were calculated by summing the daily 218 
volume of model cells containing low-oxygen waters (O2 < 2 mg L-1), and are expressed in units 219 
of km3 d following Bever et al. (2013; 2018; 2021). Daily net primary production estimates were 220 
integrated over the entire water column and averaged across the Bay and month before being 221 
compared to average Bay-wide estimates from Harding et al. (2002). 222 
 223 
2.3 Projected changes in atmospheric temperature and precipitation 224 
 Mid-21st century projected changes in atmospheric temperature and precipitation under a 225 
high emissions scenario (RCP 8.5) were obtained for multiple CMIP5 ESMs that were regionally 226 
downscaled via two statistical methodologies: Multivariate Adaptive Corrected Analogs 227 
(MACA; Abatzoglou and Brown, 2012; downloaded from MACAv2-METDATA) and Bias-228 
Corrected Spatial Disaggregation (BCSD; Wood et al., 2004; downloaded from Reclamation, 229 
2013). (Note that downscaled CMIP5 ESM output was used because downscaled CMIP6 ESM 230 
output was not yet available when the research began.) Downscaled MACA and BCSD 231 
projections have an average spatial resolution of approximately 0.042° and 0.125°, respectively. 232 
A delta approach (Prudhomme et al., 2002; Anandhi et al., 2011) was used to estimate the 233 
absolute change in atmospheric temperature and fractional change in precipitation over the 234 
Chesapeake Bay watershed. In this delta approach (also commonly referred to as a perturbation 235 
method or change-factor method), the difference in a given climate variable (i.e., air temperature 236 
or precipitation) is calculated by first subtracting monthly downscaled ESM estimates averaged 237 
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over a hindcast period (in this case 1981-2010) from average monthly future projections (in this 238 
case 2036-2065). The resulting mean annual cycle (with monthly resolution) in the delta (i.e., the 239 
absolute change in temperature or fractional change in precipitation) is then applied to reference 240 
atmospheric forcing inputs (in this case for 1991-2000) to generate future watershed scenarios 241 
(in this case for 2046-2055, hereafter referred to as mid-century) and limit uncertainty introduced 242 
by interannual variability. An additional step to modify precipitation intensity is also included in 243 
all climate scenarios, following the methodology outlined in Shenk et al. (2021b). Thirty-year 244 
averaging periods were used to limit potential biases introduced by multidecadal oscillations. 245 
 To reduce the computational load of applying the dozens of available ESMs to our combined 246 
watershed-estuarine modeling framework for a full factorial experiment, the Katsavounidis-Kuo-247 
Zhang (KKZ; Katsavounidis et al., 1994) algorithm was applied to select a subset of five ESMs 248 
from both downscaled datasets. KKZ is an objective procedure for selecting a subset of members 249 
that best span the spread of the full ensemble in a multivariate space. The selection process 250 
incrementally adds members to the ones previously selected, so that the entire ensemble is 251 
ordered and a subset of any size can be selected. This method has proven effective at covering 252 
the largest range of outcomes using the fewest ESMs in watersheds across the United States in 253 
previous research (Ross and Najjar, 2019). Because changes to hypoxia must be computed after a 254 
subset of ESMs are selected, the downscaled results were classified in terms of changes to the 255 
two variables most likely to influence hypoxia: air temperature from May–October (i.e., the 256 
historic hypoxic season in Chesapeake Bay) and precipitation from November–June 257 
(corresponding to the highest set of correlation coefficients when regressed against historical 258 
AHV estimates; Supplementary Material; Fig. S1). The KKZ algorithm first selected an ESM 259 
nearest to the center of the cluster of models in the two-parameter space, which is referred to 260 
hereafter as the Center ESM, before iteratively selecting additional ESMs that were furthest from 261 
the center of the distribution and other previously selected ESMs (Fig. 2, Table S3). The next 262 
four selected ESMs are referred to as Hot/Wet, Cool/Wet, Hot/Dry, and Cool/Dry ESMs to 263 
denote whether they are cooler, hotter, wetter, or drier, relative to the Center ESM. The specific 264 
ESMs selected based on MACA and BCSD differ slightly; however, three of the five models are 265 
the same (Cool/Dry, Hot/Dry, and Cool/Wet). This ESM selection process allows for a more 266 
robust comparison of the distribution of ESMs from multiple downscaled datasets as opposed to 267 
individual ESM comparisons that may privilege one downscaling method over others. However, 268 
because inexact matches among ESMs can impact the quantification of relative uncertainty 269 
(Sect. 2.5), additional scenarios were simulated as needed for the Center and Hot/Wet ESMs, 270 
which were different for the two downscaling techniques (Fig. 2, Table S3). Future change in 271 
temperature and precipitation between the two downscaling methods are shown for the Center 272 
ESM (Fig. 3); changes for the other four ESMs are found in the Supplementary Material (Fig. 273 
S2). 274 
 275 
2.4 Experiments 276 

Three numerical experiments (sets of simulations) were conducted to evaluate the impacts of 277 
climate scenario factors, management conditions, and the use of a subset of ESMs on future 278 
AHV projections and uncertainty (Table 1). To isolate climate impacts on AHV from the 279 
watershed alone, direct atmospheric and oceanic forcings to the Bay were held the same as in the 280 
reference simulations (see Sect. 2.3) for all experiments. The first experiment (Multi-Factor) 281 
evaluates the relative change in AHV (hereafter defined as DAHV) between the 1991-2000 and 282 
2046-2055 time periods due to the following factors: ESM, downscaling method, and watershed 283 
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model (Table 1, Fig. 4). Atmospheric deltas from ten downscaled ESMs (five from MACA and 284 
five from BCSD) were applied directly to the two watershed models for a total of 20 simulations. 285 
A separate Phase 6 climate-reference run is used to evaluate the impacts of climate alone by 286 
holding land use and nutrient applications constant. This differs slightly from the Phase 6 287 
reference run that simulates realistic and interannually varying nutrient inputs and terrestrial 288 
conditions and is compared against observations (Sect. 2.2). Two additional simulations were 289 
conducted with Phase 6 to account for the fact that the ESMs selected by the KKZ method were 290 
not identical for MACA and BCSD (Table 1, Fig. 2). 291 

The second experiment (Management) applied the same deltas used for Phase 6 MACA 292 
scenarios in the Multi-Factor experiment, but also included the effect of changing environmental 293 
management conditions, for a total of five additional simulations. These Management 294 
simulations assume that reduction targets for nutrient and sediment runoff are met in accordance 295 
with established management goals (USEPA, 2010). One additional scenario was conducted in 296 
which management goals were imposed, and climate change was not. 297 

The third experiment (All ESMs) applied all 20 MACA downscaled ESM deltas to the 298 
DLEM scenarios without any changes to management conditions, for a total of 20 additional 299 
simulations. Comparing the results of the first (Multi-Factor) and third (All ESMs) experiments 300 
highlights the strengths and limitations of using a subset of ESMs. 301 
 302 
2.5 Climate scenario analyses 303 
 To analyze climate impacts on Chesapeake Bay hypoxia, changes in O2 and AHV were 304 
compared between the reference runs and the future simulations. Relative O2 impacts introduced 305 
by the three climate scenario factors (ESM, downscaling method, and watershed model) were 306 
determined by applying an analysis of variance (ANOVA) approach to average ΔAHV estimates 307 
for each climate scenario. This method has been previously applied to the quantification of 308 
uncertainty sources in climate and hydrological applications (Hawkins and Sutton, 2009; Yip et 309 
al., 2011; Bosshard et al., 2013; Ohn et al., 2021). To use this method in this study, an average 310 
annual metric is first calculated for an outcome of interest (i.e., change in discharge, nitrogen 311 
loading, or hypoxic volume) within the Multi-Factor experiment. Then, the relative uncertainty is 312 
determined by calculating the sum of squares due to individual effects for each experimental 313 
factor (ESM, downscaling method, or watershed model). Following Ohn et al. (2021), the 314 
cumulative uncertainty is quantified for successive uncertainties introduced by each factor as 315 
well as their interactions, removing the unexplained interaction term described in Bosshard et al. 316 
(2013). The two additional ESM scenarios described previously (Table 1, Table S3) were used 317 
due to the inexact matches between MACA and BCSD ESMs selected by KKZ. Despite five 318 
ESMs being used in combination with only two downscaling methods and two watershed models 319 
in this analysis, the approach outlined (Bosshard et al., 2013; Ohn et al., 2021) accounts for this 320 
factor imbalance (five vs. two) by repeatedly subsampling combinations of two ESM scenarios 321 
from the five available. 322 

Relative frequency histograms and cumulative distributions were used to quantify the overall 323 
likelihoods of increasing/decreasing ΔAHV across the entire range of future scenarios. Average 324 
changes in the spatial distribution of O2 over the typical hypoxia season (May–September) were 325 
compared among all climate scenarios with no changes to management conditions. Results were 326 
considered significant if at least 80% of model scenarios tested agree on the direction of O2 327 
change in the estuary, as in Tebaldi et al. (2011). 328 

 329 
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3 Results 330 
 331 
3.1 Model Skill 332 
 333 
3.1.1 Watershed Models 334 
 335 
 Modeled discharge, nitrate loading, and organic nitrogen loading from the three largest Bay 336 
tributaries are comparable to observed monthly estimates derived from weighted statistical 337 
regressions (see Sect. 2.1). At the most downstream USGS stations on the Susquehanna, 338 
Potomac, and James Rivers, both Phase 6 and DLEM discharge estimates have higher skill 339 
(Nash–Sutcliffe Efficiencies closer to 1.0) relative to nitrate and organic nitrogen loading 340 
estimates (Table 2, Fig. S3). Although the overall skill of Phase 6 and DLEM is similar, Phase 6 341 
generally exhibits higher model skill than DLEM in estimating monthly nitrate loading, while 342 
DLEM demonstrates greater skill in simulating organic nitrogen loading.  343 
 344 
3.1.2 Estuarine Model 345 
 346 
 The two reference simulations, forced with loadings from DLEM and Phase 6, demonstrate 347 
substantial skill in representing key main stem estuarine biogeochemical variables, including O2, 348 
NO3, DON, primary production, and AHV (Table 3) throughout the Bay’s mainstem. Overall, all 349 
modeled variables at the surface and bottom forced by both DLEM and Phase 6 lie within 1 350 
standard deviation of observations. Modeled O2 is slightly greater than spatio–temporally paired 351 
observations at the bottom, and slightly lower than observations at the surface throughout the 352 
entire year (Table 3) and in the summer period of hypoxia (Fig. 5a-b), leading to a bias that is 353 
relatively small compared to the standard deviations of observed O2 concentrations across the 354 
entire year (Table 3). Additionally, modeled O2 performs similarly to or better than the results 355 
included in the multi-model comparison presented in Irby et al. (2016). Modeled average annual 356 
NO3 and DON are also within the range of observations at both the surface and bottom (Table 3). 357 
Whole Bay net primary production agrees well with observed estimates (Harding et al., 2002) 358 
reported over a similar time period (Table 3). Finally, modeled AHV compares favorably to data-359 
derived interpolated estimates (Table 3; Fig. 5c), with increased hypoxia in wet years compared 360 
to dry years. Average AHV estimates using Phase 6 and DLEM inputs are, respectively, 16% 361 
and 26% greater than interpolated observations (Table 3; Fig. 5c) and approximately half the 362 
model estimates lie within the estimated uncertainties (RMS % error) of the interpolation 363 
methodology (± 13%; Bever et al., 2018). Model estimates of AHV are generally slightly greater 364 
when ChesROMS-ECB is forced by DLEM watershed outputs as opposed to those from Phase 6 365 
(Table 3; Fig. 5c). 366 
 367 
3.2 Future (mid-21st century) projections of watershed discharge and nutrient loading  368 
 369 
 Increasing temperatures and changing precipitation throughout the Bay watershed produce 370 
different discharge responses for the two watershed models. On average, Phase 6 climate 371 
scenarios increase watershed runoff relative to the reference run by 4-6% while DLEM climate 372 
scenarios decrease average flow by 1-4% (Table 4). The annual flow changes range from -12 to 373 
+15% among ESM scenarios, with wetter ESMs tending to increase annual watershed discharge 374 
while drier ESM scenarios generally decrease average watershed runoff, with a lesser impact due 375 
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to atmospheric warming (Table 4; Fig. 6a). For both watershed models and downscaling 376 
methods, the Cool/Wet ESM produces the greatest increase in annual discharge. Overall, the 377 
greatest variability in changes to discharge estimates is due to ESM, as MACA and BCSD 378 
scenarios increase or decrease annual discharge by comparable amounts (Table 4; Fig 6a). 379 
 Chesapeake Bay Phase 6 watershed model climate scenarios increase average annual total 380 
nitrogen (TN) by +30% and +45% for MACA and BCSD respectively, but do not substantially 381 
change DLEM TN loads (+1% and -2% for MACA and BCSD, respectively; Fig. 7). Greater 382 
Phase 6 TN loadings are primarily due to extreme values in the Cool/Wet climate scenarios and 383 
are driven by increases in refractory DON (Fig. 7a). While DLEM scenarios show increases in 384 
the percentage of inorganic nitrogen and labile organic forms of total nitrogen loads, the 385 
contribution of particulate organic nitrogen (PON) decreases, resulting in little to no increases in 386 
overall TN loading (Fig. 7a). Phase 6 produces wetter climate scenarios increasing TN loading 387 
more than drier scenarios (Table 4; Fig 6b), with this effect being most pronounced for the 388 
Cool/Wet ESM. Phase 6 also produces the greatest percent changes in the southern rivers (James, 389 
York, Rappahannock), while DLEM produces similar percent changes in all rivers (Fig. 7b). 390 
Some Phase 6 climate scenarios substantially increase the average loading change in smaller 391 
watersheds like the Rappahannock and York, which increase TN between 77-172% and 32-392 
430%, respectively, and are comparable to the absolute change in Susquehanna TN loading (Fig. 393 
7b). In contrast with the Multi-Factor experiment results, climate scenarios that include 394 
management actions substantially reduce TN loading (-28%; Fig. 7, Table 4). Like other Phase 6 395 
climate scenarios that don’t account for management actions, the proportion of refractory organic 396 
nitrogen increases for the climate scenarios with management (+49%), but in these cases the 397 
average labile inorganic and organic nitrogen loadings also substantially decrease (-40%). 398 
 399 
3.3 Effects of future watershed change on estuarine O2 400 
 401 
 Climate change impacts on watershed discharge and nitrogen loading substantially affect 402 
estuarine hypoxia, even when, as in this study, direct climate effects on the Bay are not 403 
considered. On average, the Multi-Factor climate scenarios decrease average summer bottom O2 404 
in the Bay’s mainstem while also slightly increasing O2 at the surface in some mid-Bay areas 405 
(Fig. 8). In the northern part of the mainstem near the Susquehanna River outfall, model results 406 
show consistent decreases in both bottom and surface summer O2 (Fig. 8e,f). Further down the 407 
main stem in the mid-Bay, surface O2 increases in wet years, and experiences almost no change 408 
in dry years (Fig. 8b,c). In the same region, bottom O2 declines lessen during wet years and 409 
worsen during dry years (Fig. 8e,f). Increasing O2 levels are found in the shallow portions of the 410 
major tidal tributaries (i.e., Potomac and James), but are more pronounced in wet years than dry 411 
years (Fig. 8b-c,e-f). Altogether, average summer surface O2 increases by 0.02 ± 0.03 mg L-1 412 
(average change and standard deviation) while bottom O2 decreases by 0.03 ± 0.06 mg L-1. 413 
 There are some clear distinctions in the overall changes to future AHV when evaluating all 414 
Multi-Factor experiments. Climate effects on the watershed in DLEM increase AHV more so 415 
than in Phase 6 (5.6% vs 3.1%, respectively), but the overall standard deviation of DLEM ΔAHV 416 
results are greater than those for Phase 6 (Table 5). Similarly, using MACA vs. BCSD results in 417 
greater changes in ΔAHV (4.8% vs. 3.9%), albeit this difference due to the choice of 418 
downscaling method is less than that due to the choice of watershed model. Depending on the 419 
choice of ESM, ΔAHV ranges between +0.9% (for the Cool/Dry ESM) to +8.3 % (for the 420 
Cool/Wet ESM) with the Center ESM producing intermediate results (+4.4 %). When comparing 421 
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the impact of a particular ESM, wetter models tend to produce greater ΔAHV than drier 422 
scenarios (Fig. 6c), although interannual variability is still large. When climate scenarios are 423 
downscaled using different methodologies (either MACA or BCSD), average ΔAHVs have some 424 
notable differences, e.g., applying the Cool/Dry model to Phase 6 produces opposite average 425 
changes to hypoxia depending on downscaling method (Fig. 6c). Considering all possible 426 
combinations of scenarios, ESM average annual projected AHV spans a range of 921-939 km3 d 427 
for Phase 6 and 1019-1049 km3 d for DLEM, and four out of five of the climate scenarios in the 428 
Multi-Factor experiment projecting increases in average AHV (Table 4). 429 
 When the full distribution of Multi-Factor scenarios is evaluated, the average and standard 430 
deviation of these annual ΔAHV results are estimated to be 37 ± 64 km3 d (4.4 ± 7.4%; Fig 9). 431 
Wetter ESMs (blues in Fig. 9a) are more likely to increase hypoxia compared to drier ESMs, 432 
despite differences in downscaling method or watershed model. The likelihoods of the Cool/Dry 433 
or Hot/Dry ESM increasing hypoxia are only 58% or 50%, respectively, but these chances are 434 
greater than 80% for the Center, Hot/Wet, and Cool/Wet ESMs (Fig. 9a). Altogether, the Multi-435 
Factor experiment results in 72% of the runs increasing AHV when considering climate change 436 
impacts on terrestrial runoff (Fig. 9b). (Note, however, that this cannot technically be considered 437 
to be a statistical probability as the KKZ selection process used to generate our sample of climate 438 
scenarios is neither random nor independent.) 439 

The All-ESMs experiment produces similar results to those obtained when only a subset of 440 
five ESMs are used. Specifically, ΔAHV increases by 6.3 ± 3.5% using only five KKZ-selected 441 
ESMs and by 9.6 ± 1.7% when using all 20 ESMs (Fig. 10a,b; Model IDs further defined in 442 
Table S3). The use of five KKZ-selected ESMs covers approximately 69% of the total range of 443 
all 20 ESMs (Fig. 10c). Despite more than 15,000 options to choose from when selecting five out 444 
of 20 ESMs, the subset selected in this work demonstrates an improved ability to outperform a 445 
random selection of five ESMs (Fig. 10c) and generates a useful range of hypoxia projections. 446 
 The results of the Management experiment demonstrate the substantial impact of future 447 
nutrient reductions on hypoxia, decreasing average AHV by 50 ± 7% relative to the 1990s 448 
(DAHV = -438 ± 47 km3 d; Table 4; Fig. 11). Because there is a linear relationship between 449 
DAHV computed with Phase 6 MACA scenarios including management actions (DAHVmgmt) and 450 
those without (DAHV = 0.56 * DAHVmgmt – 262; R2=0.59, Fig. S5), DAHVmgmt can be estimated 451 
for any scenario by applying this linear model to the non-management scenario distribution. The 452 
result is a decrease of approximately 417 ± 67 km3 d among all scenarios, within the range of the 453 
management scenario subset obtained here by applying only MACA downscaled ESMs to Phase 454 
6. As expected, hypoxia increases in the Management experiment when climate impacts are also 455 
included relative to the reference management scenario, specifically by 17.1 ± 34.8 km3 d or 3.8 456 
± 7.8% (Table 4; Fig 6c). 457 
 458 
3.4 Contributions to Climate Scenario Uncertainty 459 
 460 
 Applying an ANOVA approach (Ohn et al., 2021) to watershed discharge, nutrient loadings, 461 
and ΔAHV within the Multi-Factor experiment reveals that the relative uncertainties introduced 462 
by the choice of ESM, downscaling method, and watershed model vary substantially (Fig. 12). 463 
The choice of ESM is the dominant factor affecting changes to watershed discharge and nutrient 464 
loadings (Fig. 12a-c), and comprises 59-74% of the total uncertainty. The choice of watershed 465 
model is the next largest source of uncertainty, making up 17-34% of the total variance in 466 
watershed changes, while the downscaling method only contributes 3-14%. Uncertainty in 467 
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projected organic nitrogen loadings is particularly affected by the choice of watershed model, 468 
overwhelming the variability introduced by downscaling method, and strongly affecting 469 
estimates of total nitrogen change. Unlike changes to watershed flow and loadings, the 470 
uncertainty of projected changes to hypoxia is much more evenly distributed among the three 471 
scenario factors: 40%, 25%, and 35%, for ESM, downscaling method, and watershed model 472 
respectively (Fig. 12d). 473 
 474 
4 Discussion 475 
 476 
4.1 Watershed Climate Scenario Impacts on Riverine Export and Hypoxia 477 
 478 

The climate scenario projections evaluated in this study are in near complete agreement that 479 
the Chesapeake Bay watershed will be warmer and experience greater levels of precipitation by 480 
mid-century, yet these results are not as straightforward to interpret as they relate to changes in 481 
discharge, nutrient loads, and estuarine hypoxia. Climate impacts on extreme river flows are 482 
currently evident at global scales (Gudmundsson et al., 2021), and projected increases in 483 
precipitation that could shape such events are aligned with estimates for this region derived from 484 
observational (Yang et al., 2021) and modeling (Huang et al., 2021) studies, as well as for other 485 
regions at similar latitudes (Bevacqua et al., 2021; Madakumbura et al., 2021). However, 486 
differences exist in the spatial distribution and timing of these precipitation increases, as well as 487 
in the temperature-affected rates of evapotranspiration. As a result, these estimates produce 488 
varied projections for future freshwater discharge. These complex interactions make it difficult 489 
to directly predict future discharge from projected precipitation changes, and even more difficult 490 
to relate these to changes in nutrient loading. For example, in this study half of the climate 491 
scenarios produce increasing discharge on an annual basis, yet more than 75% of these scenarios 492 
increase total nitrogen loading. Differences in the representation of soil and riverine nitrogen 493 
processes between watershed models also results in inconsistent simulated responses of nitrogen 494 
export to similar precipitation rates. Disparate export of nitrogen species (i.e., nitrate and organic 495 
nitrogen) between watershed models also directly affects future nutrient load projections. These 496 
hydrological model differences are evidenced by DLEM’s higher NO3 outputs that offset lower 497 
organic nitrogen loadings (Fig. 7a), and are discussed further in depth in Sect. 4.2. 498 

Our analysis quantifies changes in hypoxia due to mid-century climate change impacts on 499 
watershed hydrologic and water quality responses, and provides an estimate of the relative 500 
uncertainty in estuarine hypoxia response due to three distinct factors (Fig. 12): Earth System 501 
Model, downscaling method, and watershed model. Our experimental findings suggest that, in 502 
the absence of management actions, mid-century climate impacts on the Chesapeake Bay 503 
watershed will increase hypoxia, specifically annual hypoxic volume (AHV), by an average of 4 504 
± 7%, but changes to Bay O2 levels vary spatially. Average bottom main stem O2 levels from 505 
May–September are expected to decrease most in the southern half of the Bay (south of 38.5°N), 506 
particularly in climatologically dry years (Fig. 8). Again, it is important to remember that these 507 
spatially varying changes only account for the effects of climate change on watershed response 508 
in isolation, and do not include the additional direct impacts of the atmosphere and ocean. While 509 
previous findings by Irby et al. (2018) suggest that increasing atmospheric temperatures are 510 
likely to uniformly decrease O2 levels throughout the Bay’s main stem, increasing temperatures 511 
at the ocean boundary during warmer months when hypoxia is most prevalent (Hinson et al., 512 
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2021) will likely increase hypoxia more in the southern portion of the Bay. In addition, sea level 513 
rise has also been found to preferentially increase hypoxia south of 38.5°N (Cai et al., 2021). 514 

Our findings are focused on Chesapeake Bay hypoxia, but some lessons can also be drawn 515 
from other coastal ecosystems where changes in watershed discharge and nutrient loadings are 516 
also projected. In the Baltic Sea, Meier et al. (2011b) reported that hypoxia was very likely to 517 
increase regardless of ESM or climate scenario, assuming targeted reductions in accordance with 518 
the Baltic Sea Action Plan (decrease of nitrogen loads by 23 ± 5%) were not met. Extensive 519 
studies of projected oxygen change in the Baltic Sea have repeatedly demonstrated that climate 520 
impacts are likely to increase hypoxic area (BACC II, 2015 and references therein), but more 521 
recent reports (Saraiva et al., 2019a; Wåhlström et al., 2020; Meier et al., 2021, 2022) have 522 
reaffirmed that nutrient reductions in accordance with the Baltic Sea Plan are also highly likely 523 
to mitigate a substantial amount of those hypoxia increases. Repeated investigations into the 524 
impact of increased discharge and higher temperatures in the Gulf of Mexico demonstrate a 525 
likely expansion of hypoxic area (Justić et al. 1996; Lehrter et al., 2017; Laurent et al., 2018), 526 
and additional nutrient reductions required to mitigate these impacts (Justić et al., 2003). Finally, 527 
Whitney and Vlahos (2021) demonstrated a considerable erosion in oxygen gains due to nutrient 528 
reductions in the presence of climate effects, reducing projected mid-century improvements by 529 
14%, similar to the 9% increase in hypoxic volume reported by Irby et al. (2018) for O2 levels < 530 
2 mg L-1. Although these studies include direct climate change impacts on coastal water bodies, 531 
most support the findings here demonstrating that increases in discharge and associated nutrient 532 
loadings are likely to increase Chesapeake Bay hypoxia. Overall, climate impacts on land have 533 
the potential to profoundly modify biogeochemical interactions in the coastal zone and limit the 534 
efficacy of nutrient reductions. 535 

 536 
4.2 Uncertainty in Climate Scenario Projections 537 
 538 

Projected changes in watershed discharge and nutrient delivery to the Chesapeake Bay 539 
produce modest increases in estuarine hypoxia, with medium confidence (Mastrandrea et al., 540 
2010). AHV has a high degree of interannual variability, and future hypoxia estimates can be 541 
modified substantially by the choice of ESM, downscaling method, and watershed model (Fig. 542 
6c). While certain factors (particularly ESM and greenhouse gas emissions scenarios; Meier et 543 
al., 2021) have previously been extensively evaluated in coastal systems with regards to hypoxia, 544 
the results presented here also demonstrate the importance of terrestrial forcings on estuarine 545 
oxygen levels. 546 

In this study, future changes in watershed discharge, nitrogen loadings, and estuarine hypoxia 547 
are found to be highly dependent on the selection of a specific ESM (Fig. 12), comprising a 548 
majority of the total uncertainty in watershed outcomes and the greatest fraction of total 549 
uncertainty for O2 levels. When only the effect of ESM choice is considered (and downscaling 550 
and hydrological model options are not; Fig. 10), the average projected change in AHV using 551 
only three ESMs (often chosen to represent cool, median, and hot scenarios) has a greater 552 
standard error than the selection of five in this study. Directly comparing results from the 553 
experiment that compared five ESMs, two downscaling methods, and two watershed models 554 
(Multi-Factor) versus that which only considered the impact of multiple ESMs (All ESMs) 555 
shows a substantial overlap in the range of projected ΔAHV. In addition, multiple ESMs 556 
downscaled with a single methodology and applied to one hydrological model produced 557 
meaningfully different estimates of ΔAHV than a more balanced approach (Fig. 11). 558 
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Inter-model variability among ESMs appears to contribute most substantially to differences 559 
in Bay watershed inputs, but the choice of downscaling methodology can also affect these 560 
projections. The BCSD (Wood et al., 2004) and MACA (Abatzoglou and Brown, 2012) 561 
downscaling methodologies used here employ different approaches to reduce historical ESM 562 
biases, impacting the variability of spatio–temporal watershed hydrologic and water quality 563 
responses. The ability to statistically downscale ESMs accurately depends on the spatially 564 
coarser ESM’s ability to simulate synoptic-scale (~1000 km) patterns and may still 565 
underestimate the distributional tails of changes to temperature and precipitation. This increases 566 
the importance of properly selecting a subset of ESMs (Abatzoglou and Brown, 2012). 567 

Watershed model variability is caused by differences in the representation of processes that 568 
affect discharge, those controlling the fate and transport of nutrients from land and in rivers, and 569 
lag times of groundwater transport. The two watershed models used here project substantially 570 
different results in watershed discharge and nitrogen delivery, even when the same changes to 571 
meteorological forcings are applied (Fig. 6). DLEM projects no change or decreases in discharge 572 
for nearly all scenarios, as opposed to greater average increases in discharge for Phase 6 573 
scenarios (Fig. 6a), likely driven by differences in the representation of evapotranspiration. 574 
Explicit soil biogeochemical processes within DLEM increase nitrification rates in warmer 575 
climate scenarios, producing higher nitrate loadings than Phase 6 despite comparable discharge 576 
changes (Fig. 6b). The greater total nitrogen loadings produced by Phase 6 are largely a 577 
consequence of its parameterizations for erosion and refractory nitrogen bound to sediment. 578 
Increases in bioavailable nitrate loadings, unlike refractory organic nitrogen that comprises the 579 
majority of DON loadings, produce greater levels of primary production and remineralization 580 
within the estuary. This largely explains the discrepancy between watershed model hypoxia 581 
estimates (Table 5). 582 

Our findings demonstrate the importance of considering differences among these three 583 
factors (ESM, downscaling, and watershed model) that may contribute to a wider range of target 584 
water quality variables and living resource responses in coastal marine ecosystems like the 585 
Chesapeake Bay that are highly influenced by watershed processes. Hydrological model 586 
assumptions can have potentially significant impacts on estuarine hypoxia. For example, the 587 
relatively high organic nitrogen loadings in Phase 6 compared to DLEM’s comparatively modest 588 
exports under the same future scenarios result in different levels of annual hypoxia. While 589 
dramatic increases in organic nitrogen loadings within Bay tributaries are mostly limited to 590 
Cool/Wet Phase 6 scenarios, there is precedent for catastrophic erosion within the Bay watershed 591 
driven by extreme precipitation events (Springer et al., 2001). The relative uncertainty 592 
introduced by individual factors is also not necessarily equivalent for discharge, nitrogen 593 
loadings, and AHV (Fig. 12). The complex connections between terrestrial runoff and 594 
biogeochemical changes in the marine environment may expand further when higher order 595 
trophic-level species are considered, and even more so when direct atmospheric impacts on the 596 
Bay are also included. It is unlikely that general conclusions regarding the relative impacts of 597 
different factors can be drawn for a marine ecosystem when only uncertainties in watershed 598 
discharge and nutrient loadings are considered. Had our results only accounted for the impacts of 599 
these factors on watershed changes and not estuarine oxygen levels, the role of downscaling 600 
could be incorrectly assumed to contribute negligible variability to hypoxic volume (Fig. 12). It 601 
is the complex interactions of nitrogen species transformations within this estuarine model that 602 
are responsible for this somewhat unexpected large contribution of downscaling method 603 
uncertainty that is less prominent in watershed changes. 604 
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Despite the relatively small magnitude of Chesapeake Bay watershed climate impacts on 605 
estuarine hypoxia compared to previous evaluations of other climate impacts, like atmospheric 606 
warming over the Bay (Irby et al., 2018; Ni et al., 2019; Tian et al., 2021), the relative 607 
contributions of ESM and downscaling effects to the total uncertainty are large and are also 608 
likely to expand the range of outcomes for other climate sensitivity studies in this region. This 609 
suggests that, when attempting to determine a likely range of ecosystem outcomes, selecting 610 
additional downscaling techniques and hydrological model responses should be considered in 611 
addition to the more common practice of only selecting multiple ESMs. 612 
 613 
4.3 Hypoxia Lessened by Impacts of Management Actions 614 
 615 

Projections of changes to watershed discharge and nutrient delivery can better inform 616 
regional environmental managers tasked with managing interactions among nutrient reduction 617 
strategies, climate change, and coastal hypoxia (Hood et al., 2021; BACC II, 2015; Fennel and 618 
Laurent, 2018). The Chesapeake Bay results provided in this analysis demonstrate that the 619 
management actions mandated to improve water quality (USEPA, 2010) will decrease hypoxia 620 
by roughly 50%, approximately an order of magnitude more than projected increases due only to 621 
watershed climate change (Fig. 11). Therefore, nutrient reduction strategies are very likely to 622 
remain effective at reducing watershed nutrient loading and its contribution to eutrophication and 623 
hypoxia over a range of possible ESM scenarios (Mastrandrea et al., 2010). Should all 624 
management actions be implemented as outlined in the USEPA’s Total Maximum Daily Load 625 
(USEPA, 2010), it is very likely that future climate impacts on Bay watershed runoff will worsen 626 
Bay hypoxia by a far smaller amount, relative to 1990s reference conditions. These findings are 627 
consistent with those of Irby et al. (2018) who also examined the impacts of watershed climate 628 
on Chesapeake Bay hypoxia for the mid-21st century. When evaluating the effects of watershed 629 
climate impacts and management actions together, Irby et al. (2018) estimated an average AHV 630 
increase of 12.8 km3 d, which is well within the range of 17.1 ± 34.8 km3 d reported here. 631 
(Interestingly, the combined impact of all climate stressors, i.e. atmosphere, ocean, and 632 
watershed, increased average AHV by 24.5 km3 d, which is also within the range of the results 633 
reported here). Because climate change impacts are likely to increase total nitrogen loads, 634 
implementing nutrient reductions that do not account for the detrimental effects of climate 635 
change will reduce the likelihood of attaining water quality targets. Further quantifying a range 636 
of future estimates of watershed discharge and nitrogen loading using regional models is critical 637 
to understanding the possibilities and limitations of mitigating negative climate impacts via 638 
nutrient reductions. 639 

Recent findings support the hypothesis that nutrient reductions will improve water quality 640 
despite projected climate impacts in both freshwater systems (Wade et al., 2022) and other 641 
coastal marine systems (Whitney and Vlahos, 2021; Saraiva et al., 2019a; Wåhlström et al., 642 
2020; Meier et al., 2021; Große et al., 2020; Jarvis et al., 2022). In the Chesapeake Bay, reduced 643 
nutrient loading (Zhang et al., 2018; Murphy et al., 2022) has already helped mitigate growing 644 
climate change pressures (Frankel et al., 2022), despite rapidly increasing Bay temperatures over 645 
the past 30 years (Hinson et al., 2021). Like these prior studies, our findings confirm that 646 
management actions will likely produce even greater benefits to O2 in coastal zones strongly 647 
affected by terrestrial runoff. While direct effects (e.g., air temperature) are expected to increase 648 
hypoxia more so than watershed changes in Chesapeake Bay (Irby et al., 2018, Ni et al., 2019), 649 
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the comparatively greater impacts of management actions reported here are also likely to 650 
substantially reduce the overall risk from a multitude of co-occurring climatic stressors. 651 
 652 
4.4 Study Limitations and Future Research Directions 653 
 654 

Despite the plainly evident finding of nutrient reduction strategies improving water quality 655 
and counteracting negative climate change watershed impacts, a number of important caveats 656 
should temper this conclusion. First, the subset of scenarios that include management actions is 657 
limited to a set of five ESMs statistically downscaled with a single methodology and applied to 658 
one watershed model. As demonstrated in this work, this assumption may oversimplify the 659 
complex relationship between climate forcings and watershed model simulations, especially 660 
given that DLEM scenarios produce more change in nitrate and consequently more hypoxia than 661 
Phase 6 scenarios. Management actions implemented in Phase 6 nutrient reduction scenarios 662 
represent a multitude of possible methods to reduce point and nonpoint source pollution that are 663 
assumed to be fully implemented with a high operational efficacy by mid-century, but the true 664 
performance of best management practices operating under future hydroclimatic stressors 665 
remains largely unresolved (Hanson et al., 2022). Additionally, the importance of legacy 666 
nitrogen inputs to the Bay may grow over time (Ator and Denver, 2015; Chang et al., 2021), and 667 
can only be properly accounted for via a long-term transient simulation that accounts for 668 
changing groundwater conditions. 669 

A key strength of the delta method applied here is its ability to remove the influence of 670 
interannual variability, which is known to strongly influence hypoxia in the Chesapeake Bay 671 
(Bever et al., 2013). However, the delta method is unable to account for the impacts of 672 
unanticipated extreme events, or changing patterns of precipitation intensity, duration, and 673 
frequency that produce dramatic responses in sediment washoff, scour, and consequent 674 
watershed organic nitrogen export. Air temperature and precipitation were the only watershed 675 
model input variables adjusted in this analysis, allowing for a more equivalent comparison 676 
between downscaling approaches. Future representations of watershed change may also better 677 
account for changes in runoff through the inclusion of factors like ESM-estimated relative 678 
humidity that can help avoid possible unreasonable amplification of potential evapotranspiration 679 
that would decrease tributary discharge (Milly and Dunne, 2011) and associated nutrient loads. 680 

Although main stem Bay oxygen levels are the focus of this study, watershed impacts are 681 
also likely to influence water quality in smaller scale tributaries. Differences in Chesapeake Bay 682 
temperatures introduced by ESM and downscaling method have also been investigated by 683 
Muhling et al. (2018), and contribute to biogeochemical variability via direct impacts of 684 
atmospheric temperature on Bay warming. Incorporating different facets of these relative 685 
uncertainties into projections of coastal change has also been demonstrated to affect ecological 686 
outcomes like those surrounding fisheries (Reum et al., 2020; Bossier et al., 2021). Thus, the 687 
impacts of these uncertainties are also very likely to affect socio-economic systems tied to 688 
coastal resources. The analytical method applied here is well established within climatic and 689 
terrestrial settings, so the relative dearth of coastal applications (excluding Meier et al., 2021) 690 
may be more related to a consequence of computational demand or greater focus on uncertain 691 
parameterizations of marine biogeochemical processes (Jarvis et al., 2022) that also play a large 692 
role in potential future hypoxia outcomes. 693 
 694 
5 Conclusions 695 
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 696 
Coastal ecosystems like the Chesapeake Bay that are currently and will likely continue to be 697 

negatively affected by climate impacts exhibit complex responses in future scenarios, 698 
demonstrating our lack of complete system understanding. While this research reaffirms the 699 
importance of management actions in reducing levels of hypoxia, it also highlights the fact that 700 
uncertainties in climate-impacted watershed conditions will affect estimates of Chesapeake Bay 701 
O2 levels. Additional study of uncertainty interactions within a full climate scenario (that 702 
includes the impacts of changing atmospheric and oceanic conditions) will help better quantify a 703 
range of hypoxia projections, among other environmental conditions within the Chesapeake Bay. 704 
These results underscore the need for additional rigorous analyses of model parameterizations 705 
and their contributions to model scenario uncertainty to help identify biogeochemical processes 706 
that are most sensitive to climate change impacts and warrant further investigation. The 707 
development of more rapid techniques to evaluate a broader range of future water quality and 708 
ecological outcomes, and an inspection of their underlying assumptions, can help provide a 709 
better mechanistic understanding of complex reactions to multiple climate stressors. Like 710 
ongoing efforts to reduce greenhouse gas emissions and lessen the impacts of future climate 711 
change globally, continuing efforts to reduce eutrophication in coastal waters will help improve 712 
ecosystem resilience and the benefits derived by communities dependent on their function. 713 
Indeed, nutrient reduction plans are likely to become even more essential to managers tasked 714 
with preserving the health and function of rapidly evolving coastal environments and unfamiliar 715 
future conditions.   716 
  717 
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Appendix A: 718 
 719 

Original partitioning of organic nitrogen pools from the DLEM and Phase 6 watershed 720 
models was based on fixed fractions previously described in Frankel et al. (2022). There, 80% of 721 
the refractory organic nitrogen (rorN) loadings from Phase 6 were allocated to the small detritus 722 
nitrogen (SDeN) pool and the remainder was applied to the refractory dissolved organic nitrogen 723 
(rDON) pool in ChesROMS-ECB. More realistic changes to this partitioning of watershed rorN 724 
loadings were implemented, which decreased the lability of organic nitrogen loads overall. A 725 
specified threshold of rorN loadings was set at the 90th percentile of reference Phase 6 watershed 726 
inputs to the estuarine model, and thresholds were also set for individual river levels of discharge 727 
at the 50th and 90th percentiles of Phase 6 reference simulations. Below the 50th percentile of 728 
discharge levels, 80% of the rorN inputs below the specified rorN threshold were allocated to 729 
ChesROMS-ECB’s SDeN pool, and the remainder were assigned to the rDON pool. Between the 730 
50th and 90th percentiles of discharge events, 50% of the rorN load below the specified rorN 731 
threshold was apportioned to ChesROMS-ECB’s SDeN and rDON pools. At the uppermost 732 
levels of discharge (greater than the 90th percentile), 5% or rorN was allocated to SDeN and 95% 733 
was given to rDON within ChesROMS-ECB. For any partitioning of an organic nitrogen load, 734 
regardless of the level of discharge, rorN loading above this cutoff was allocated to ChesROMS-735 
ECB’s rDON pool. The rorN load below this threshold was allocated according to the 736 
fractionations described above. Changes to Phase 6 watershed loadings were mapped to 737 
equivalent DLEM watershed input variables, following the methodology of Frankel et al. (2022). 738 
  739 
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Tables and Figures 1173 
 1174 
Table 1. Experiments conducted to quantify future changes in Annual Hypoxic Volume (AHV). 1175 
 1176 

Experiment 
Name 

Number of 
ESMs 

Number of 
downscaling techniques 

Number of watershed 
models 

Number of 
simulations 

Multi-Factor 5a 2 (MACA and BCSD) 2 (DLEM and Phase 6) 20b 
Management 5a 1 (MACA) 1 (Phase 6) 5c 

All-ESMs 20 1 (MACA) 1 (DLEM) 20 
aCorresponding to the KKZ-selected subset of five ESMs: Center, Cool/Dry, Hot/Wet, Cool/Wet, and Hot/Dry for both MACA 1177 
and BCSD downscaled model outputs. 1178 
bAdditional scenarios were simulated for the Multi-Factor experiment as needed (for the Center and Hot/Wet ESMs) to 1179 
accurately partition uncertainty in model outcomes. 1180 
cAn additional scenario simulated the effects of future management conditions without climate change impacts.  1181 
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Table 2: Nash-Sutcliffe efficiencies of the DLEM and Phase 6 Watershed Models at the most 1182 
downstream stations of three major rivers, for monthly estimates of discharge and nutrient 1183 
loading over the period 1991-2000. Nash-Sutcliffe efficiencies equal to one are indicative of 1184 
perfect model skill and negative values indicate that error variance exceeds the observed 1185 
variance. 1186 

Major River 
Freshwater Discharge Nitrate Loading Organic Nitrogen Loading 

DLEM Phase 6 DLEM Phase 6 DLEM Phase 6 
Susquehanna 0.74 0.88 0.60 0.78 0.37 0.12 

Potomac 0.59 0.90 0.32 0.87 0.34 -0.69 
James 0.59 0.92 -1.05 0.42 0.51 0.72 

  1187 
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Table 3: Model skill metrics over the reference period (1991-2000) 1188 

Variable Depth Watershed 
model 

ChesROMS-ECB 
estimate 

Observed 
estimatea Bias RMSD 

O2 
[mg L-1] 

Surface DLEM 7.9 ± 2.3 9.3 ± 2.0 -1.4 2.2 
Phase 6 8.0 ± 2.3 -1.4 2.2 

Bottom DLEM 6.1 ± 3.5 5.7 ± 3.5 0.4 1.7 
Phase 6 6.2 ± 3.4 0.5 1.6 

NO3 
[mmol N m3] 

Surface DLEM 0.32 ± 0.36 0.23 ± 0.33 0.09 0.23 
Phase 6 0.30 ± 0.37 0.06 0.22 

Bottom DLEM 0.27 ± 0.33 0.14 ± 0.24 
0.13 0.25 

Phase 6 0.25 ± 0.33 0.11 0.23 

DON 
[mmol N m3] 

Surface DLEM 0.27 ± 0.05 0.28 ± 0.08 -0.00 0.08 
Phase 6 0.32 ± 0.08 0.05 0.12 

Bottom DLEM 0.27 ± 0.05 0.26 ± 0.08 
0.00 0.08 

Phase 6 0.31 ± 0.08 0.04 0.11 
Primary 

Production 
[mg C m-2 d-1] 

Water 
Column 

DLEM 1146 ± 154b 
957 ± 287 

189 
N/A 

Phase 6 1133 ± 129 176 
AHV 

[km3 d] 
Water 

Column 
DLEM 987 ± 254 785 ± 201 202 250 
Phase 6 906 ± 199 121 212 

aObserved estimates and standard deviations for O2, NO3, and DON are from the WQMP at 20 main stem stations. Observed 1189 
estimate and standard error for primary production are derived from Harding et al. (2002), averaged over Feb-Nov for the years 1190 
1982-1998. Observed estimate and standard deviation for AHV is derived by applying a weighted-distance interpolation model to 1191 
observed O2 at a limited number of stations (Bever et al., 2013). 1192 
bModeled primary production is computed only over Feb-Nov for comparison with the observed estimate.  1193 
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Table 4: Annual average and standard deviations of reference (1991-2000) and climate scenario 1194 
(2046-2055) watershed loadings and estuarine hypoxia. 1195 

Watershed Freshwater Discharge [km3 y-1] 
Watershed 

Model DLEM Phase 6 Phase 6 with 
Management 

1990s 84 ± 26 72 ± 21 74 ± 21 
2050s 

Downscaling 
MACA BCSD MACA BCSD MACA 

Center 87 ± 28 74 ± 24 78 ± 21 80 ± 22 79 ± 21 
Cool/Dry 76 ± 24 75 ± 24 67 ± 19 77 ± 22 68 ± 19 
Hot/Wet 84 ± 29 86 ± 29 79 ± 22 77 ± 21 80 ± 22 
Hot/Dry 77 ± 25 74 ± 23 70 ± 20 68 ± 20 72 ± 20 

Cool/Wet 93 ± 29 95 ± 30 83 ± 22 80 ± 22 84 ± 22 
ESM Average 84 ± 27 81 ± 26 75 ± 21 76 ± 21 77 ± 21 

Watershed Nitrogen Loading [109 gN y-1] 
Watershed 

Model DLEM Phase 6 Phase 6 with 
Management 

1990s 151 ± 49 147 ± 46 87 ± 28 
2050s 

Downscaling MACA BCSD MACA BCSD MACA 

Center 159 ± 46 138 ± 41 177 ± 63 192 ± 75 103 ± 36 
Cool/Dry 137 ± 39 132 ± 38 133 ± 36 166 ± 53 78 ± 23 
Hot/Wet 157 ± 48 153 ± 45 183 ± 66 184 ± 68 105 ± 37 
Hot/Dry 149 ± 45 138 ± 41 146 ± 42 140 ± 40 86 ± 26 

Cool/Wet 159 ± 43 181 ± 62 301 ± 186 352 ± 244 156 ± 85 
ESM Average 152 ± 43 148 ± 48 188 ± 110 207 ± 139 105 ± 53 

Annual Hypoxic Volume [km3 d] 
Watershed 

Model DLEM Phase 6 Phase 6 with 
Management 

1990s 987 ± 254 904 ± 171 449 ± 144 

2050s 
Downscaling MACA BCSD MACA BCSD MACA 

Center 1072 ± 233 985 ± 250 926 ± 152 938 ± 152 470 ± 131 
Cool/Dry 994 ± 252 975 ± 257 885 ± 177 961 ± 170 429 ± 148 
Hot/Wet 1094 ± 247 1059 ± 249 931 ± 156 928 ± 171 480 ± 131 
Hot/Dry 1075 ± 263 996 ± 259 893 ± 164 871 ± 165 442 ± 141 

Cool/Wet 1011 ± 204 1081 ± 238 969 ± 170 997 ± 203 507 ± 138 
ESM Average 1049 ± 234 1019 ± 244 921 ± 160 939 ± 171 466 ± 135 

  1196 
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Table 5: Average ± standard error in ΔAHV (%) holding scenario effects (ESM, Downscaling 1197 
Method, Watershed Model) constant. 1198 

  Scenario 
Factor Effect Δ AHV, % 

ESM 

Center 4.4 ± 5.4 
Cool/Dry 0.9 ± 4.3 
Hot/Wet 6.7 ± 6.2 
Hot/Dry 1.4 ± 3.6 

Cool/Wet 8.3 ± 6.5 

Downscaling MACA 4.8 ± 6.0 
BCSD 3.9 ± 5.9 

Watershed 
Model 

DLEM 5.6 ± 7.5 
Phase 6 3.1 ± 3.8 
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 1199 
Figure 1: (a) Map showing the extent of the Chesapeake Bay watershed boundary, major basins, 1200 
River Input Monitoring (RIM) stations for the Susquehanna, Potomac, and James Rivers (red 1201 
circles), and ChesROMS river input locations (yellow circles). (b) Bathymetry of the 1202 
ChesROMS-ECB model domain, river input locations (yellow circles), and 20 CBP main stem 1203 
monitoring stations (green triangles).  1204 
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 1205 
Figure 2: Relative changes in May-October temperatures and November-June precipitation over 1206 
the Chesapeake Bay watershed for an ensemble of ESMs (circled letters) downscaled using (a) 1207 
MACA and (b) BCSD methodologies. Horizontal and vertical blue lines correspond to the 1208 
ensemble average changes in temperature and precipitation. Numbers adjacent to particular 1209 
ESMs in both panels denote the order in which the first five were selected by the KKZ algorithm.  1210 
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 1211 
Figure 3: Changes in November to June precipitation (a, b) and May to October temperatures (c, 1212 
d) for the MACA (a, c) and BCSD (b, d) Center ESMs between mid-century (2046-2055) and the 1213 
reference period (1991-2000).  1214 
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 1215 
Figure 4: Diagram of Multi-Factor experimental design, comprising a total of 20 model 1216 
scenarios.  1217 
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 1218 
Figure 5: ChesROMS-ECB skill for average summer (Jun-Aug) O2 profiles at main stem 1219 
monitoring locations using watershed inputs from (a) DLEM and (b) Phase 6 over the reference 1220 
period 1991-2000. (c) Modeled AHV using DLEM and Phase 6 compared to interpolated 1221 
observations (error bars denote RMS percent error) over the reference period 1991-2000. 1222 
Average hydrologic conditions are noted below corresponding years and signify dry (D), average 1223 
(A), or wet (W) years.  1224 
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 1225 

 1226 
 1227 
Figure 6: Mean and standard deviations of changes to freshwater discharge (a), total nitrogen 1228 
loadings (b), and annual hypoxic volume (c) for Multi-Factor and Management experiments.  1229 
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 1230 
Figure 7: Average TN loadings among ESM scenarios for reference scenarios and various 1231 
components of the Multi-Factor and Management experiments. TN loadings divided by (a) 1232 
nitrogen species component: dissolved inorganic nitrogen (DIN), particulate organic nitrogen 1233 
(PON), dissolved organic nitrogen (DON), and refractory dissolved organic nitrogen, and (b) by 1234 
major river basin (SUS = Susquehanna, RAP = Rappahannock, POT = Potomac, YRK = York, 1235 
EAS denoting eastern shore rivers including the Elk, Chester, Choptank, and Nanticoke, JAM = 1236 
James, PAX = Patuxent).  1237 
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 1238 
Figure 8: Average O2 changes in Multi-Factor experiment scenarios at the surface (a-c) and 1239 
bottom (d-f). Columns correspond to average changes for all years (a, d) as well as 1240 
hydrologically wet (b, e) and dry (c, f) years.  1241 
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 1242 
Figure 9: Summary of Multi-Factor experiment results for changes to annual hypoxic volume, 1243 
expressed as a histogram of relative frequencies (a) and an empirical cumulative distribution (b).  1244 
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 1245 
Figure 10: (a) ΔAHV for the All-ESMs experiment. Red dashed line denotes the multi-model 1246 
average of five KKZ-selected ESMs; black dashed line denotes the full 20-model average. (b) 1247 
ΔAHV and standard errors as estimated by increasing number of KKZ-selected ESMs. Black 1248 
lines correspond to 20-model average (solid) and associated standard errors (dotted) from the 1249 
All-ESMs experiment. (c) Percent of ΔAHV range covered by sequentially increasing the 1250 
number of KKZ-selected ESMs. Black lines correspond to the range (solid) and associated 1251 
standard error (dashed) of estimates chosen by randomly selecting ESMs. 1252 
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 1253 
Figure 11: Summary of all experiment results for change in Annual Hypoxic Volume (ΔAHV), 1254 
expressed as a cumulative distribution function. Black dashed vertical line corresponds to no 1255 
change in AHV.  1256 
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 1257 
Figure 12: Percent contribution to uncertainty from Earth System Model (ESM), downscaling 1258 
methodology (DSC), and watershed model (WSM), for estimates of (a) discharge, (b) organic 1259 
nitrogen loading, (c) nitrate loading, and (d) change in annual hypoxic volume (DAHV). 1260 
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